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Introduction of the Lié nard-Wiechert correction to the particle simulation of relativistic plasmas

Luis Plaja and Enrique Conejero Jarque
Departamento de Fı´sica Aplicada, Universidad de Salamanca, E-37008 Salamanca, Spain

~Received 18 March 1998!

We discuss the implementation of time retardation in the relativistic simulation of a plasma. We show that
this has to be done at two different levels: first, with the introduction of retarded charge and current densities
in the potential integration and, second, with the implementation of the Lie´nard-Wiechert correction, in the
form of velocity dependent denominators. While the first step is often included in the particle calculation of
plasmas, the second is, generally, neglected. The introduction of the Lie´nard-Wiechert correction in the phi-
losophy of plasma particle-in-cell codes is, however, nontrivial. In this paper, we propose an extension of these
codes that includes this relativistic correction, and we show explicitly how it can be adapted to one-
dimensional calculations. Finally we present results of the extended code corresponding to a plasma interacting
with a very intense electromagnetic wave. As a consequence of the field anisotropy induced by the Lie´nard-
Wiechert correction, we find a dramatic enhancement in the high-order frequencies of the electromagnetic field
scattered by the plasma target.@S1063-651X~98!09509-9#

PACS number~s!: 52.65.Rr, 52.60.1h, 52.40.Nk
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I. INTRODUCTION

In the past two decades we have witnessed an extrao
nary development in laser techniques, which have lead
rapid growth in the field of nonlinear optics beyond the p
turbative regime. Several new aspects have been inv
gated, both theoretically and experimentally@1#. The funda-
mental mechanisms involved in the field harmon
generation and the ionization of single-electron atoms se
now understood with the aid of massive computer calcu
tions, from which some simple analytical models can be
rived. The attention is now focused on more complex s
tems, like many electron atoms, molecules, or clusters,
which the exact numerical integration of the equations
motion becomes a formidable task. Among these comp
systems, solids are being intensively studied at present@2#.
There are a number of reasons for this interest: first, it is w
known that the intensity of the scattered radiation is, gen
ally, a growing function with the number of scatterers, the
fore the reflected field from a solid target is orders of ma
nitude more intense than that of a single atom. Second, so
are much easier than gases to handle in the laboratory.
experimental convenience is, however, balanced by the c
plex theoretical treatment of such systems. While the ex
integration has been attempted only for very specific ca
@3#, approximated models give good insight provided the
ser intensity is high enough to ionize the target, and the
fore, to create a plasma@4,5#.

The numerical integration of a plasma target impinged
a laser beam can be performed either from the point of v
of the plasma as a charged fluid, or by considering it as a
of interacting charged particles. The simplicity of the lat
approach is, probably, one of the reasons why it is so s
cessful among the scientific community. The so-cal
particle-in-cell~PIC! codes discretize the charge density in
an ensemble of quasiparticles with a chosen spatial exten
and the corresponding charge. The particles’ dynamic
governed by the Lorentz equation, and the electromagn
field is integrated from the charge and current densities
culated from the particle distribution@6,7#.
PRE 581063-651X/98/58~3!/3977~7!/$15.00
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II. RELATIVISTIC FIELD CORRECTION
IN THE PARTICLE-IN-CELL CALCULATIONS

The standard PIC codes incorporate relativity in the in
gration of the Lorentz equation for the particles. Althou
this is a major correction, it is only partial since the relati
istic approach should be included also when integrat
Maxwell equations. In principle, one must expect to find
retarded solution for the fields, which can only be obtain
by an integration in the four-dimensional space-time, and
by an integration in the three-dimensional space. The
tarded solution for the transverse field has been used pr
ously@6#, but is generally neglected for the longitudinal fiel

A natural way of including retardation is to integra
Maxwell equations for the potentials in the Lorentz gaug

¹2f2
1

c2

]2

]t2
f524pr, ~1!

¹2AW 2
1

c2

]2

]t2
AW 52

4p

c
jW. ~2!

These equations have an integral solution of the form@10#

f~rW,t !5E r~rW8,t8!

urW2rW8u
U

t8

drW8, AW ~rW,t !5
1

cE jW~rW8,t8!

urW2rW8u
t8drW8.

~3!

where t85t2urW2rW8u/c. From the particle viewpoint, the
charge density associated with an ensemble of charges
be written as

r~rW,t !5E drW8(
m

qmd@rW82rWm~ t !#

5E drW8(
m

qmdF rW82rWm~0!2E
0

t

vW m~t!dtG , ~4!
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3978 PRE 58LUIS PLAJA AND ENRIQUE CONEJERO JARQUE
where we have replaced the charges’ coordinates by t
time-integral representation. The common approach
plasma particle calculations is to compute the charge den
from Eq. ~4! discretized in a spatial grid,

r~rW i ,t !5
1

DV (
m

xm
a

5xi
a

qm , ~5!

DV being the volume element of the spatial grid, and wh
i labels the spatial cell in the grid. The summatory of Eq.~5!

is restricted to those particles whose positionrWm(t8) at t8
5t2urW2rWm(t8)u/c is within the cell located atrW i , i.e.,
xm

a (t8)5xi
a in 4-vector notation.

In a particle-in-cell code,r(rW,t8) is computed at all pre-
vious times using Eq.~5!. Therefore, one might want to ca
culate the potentials from the grid version of Eq.~3!. How-
ever, this is not a correct procedure. For instance, for a sin
particle, we would obtain a retarded Coulomb potential
the scalar potential,

f~rW i ,t !5
q

ur i
W2rW8~ t8!u

~wrong!. ~6!

In contrast, the correct formula for the relativistic on
particle potential is given by the well-knownLiénard-
Wiechertexpression,

f~rW i ,t !5F12
vW 8~ t8!•nW

c
G21

q

ur i
W2rW8~ t8!u

~7!

wherenW 5@r i
W2rW8(t8)#/ur i

W2rW8(t8)u, the unit vector pointing
to the direction of observation. The reason for the mislead
of Eq. ~6! is that we have implicitly taken as unity the spat
integral of the retarded delta function@8#

E d@rW82rWm~ t8!#drW85E 1

12~vW m•n!/c
U

t8~uW !

d~uW !duW Þ1.

~8!

Therefore, the relativistic corrections in the solution
Maxwell equations appear at two different levels. First, w
the introduction of retardation, as in Eq.~3! and, second, in
taking into account the Lie´nard-Wiechert velocity denomina
tors when computing the charge and current densities f
an ensemble of particles. A direct way to introduce bo
levels is to compute the potential associated with ev
charge and calculating the total potential as the superpos
of these single-particle potentials,

f~rW,t !5(
m

fm~rW,t !

5(
m

1

12vW m~ tm8 !•nW m~ tm8 !/c

qm

urW2rWm~ tm8 !u
. ~9!

Although, in principle, this is a correct way of calculatin
the whole potential, it lacks one of the major advantages
the PIC algorithms: By calculating the charge and curr
densities associated by a set of charges, and using the
ir
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compute the associated fields, they reduce drastically
time requirements of the code. This is clear by noting t
Eq. ~9! requires a scan over the whole set of particles
compute the potential at a single point in the spacerW. PIC
calculations, on the other hand, compute the charge and
rent densities associated with the set of charges, which
quires a single scan over the set of particles, and then i
grate Maxwell equations in space, which requires a sin
scan over the spatial grid. It is, therefore, justified to ma
the effort to introduce the relativistic corrections discussed
the preceding section into the PIC calculation philosop
We will next show how this can be done, provided we intr
duce some approximations.

First, let us factorize the summation of Eq.~9! into a set
of partial summations of particles that share the same volu
element at the same time, (rWm,tm)5(rW8,t8) or xm

a 5x8a in
4-vector notation. In the following, we will assume the io
are fixed, which is a reasonable approximation for the sh
laser pulses considered in this paper~it must be pointed out,
however, that the extension of the following treatment
include ions or other plasma species is trivial!. Since the
ionic potential is constant in time, the only dynamic cont
bution comes from the plasma electrons. The charge of
particles being the same, we have

fe~rW,t !5E drW8
re~rW8,t8!

urW2rWmu

1

N~rW8,t8!
(
m

xm
a

5x8a

1

12vW m~ t8!•nW /c
,

~10!

whereN(rW8,t8) is the number of particles sharing the sam
volume element at timet8, and the subindexe stands for
electrons. To obtain the total potential, the ionic part sho
be added. Defining the averaged velocity of the electron
each volume element as

vW ~rW8,t8!5
1

N~rW8,t8!
(
m

xm
a

5x8a

vW m~ t8! ~11!

we have vW m(t8)5vW (rW8,t8)1DvW m(t8). Substituting in Eq.
~10!, the term in the denominator may be expressed a
Taylor series in the velocity fluctuations,DvW m(t8)/c,

1

12vW m~ t8!•nW /c
.

1

12vW ~ t8!•nW /c
H 11

DvW m~ t8!•nW /c

12vW ~ t8!•nW /c

1F DvW m~ t8!•nW /c

12vW ~ t8!•nW /c
G 2

1•••J . ~12!

Performing the summation of Eq.~10!, the first term of the
Taylor series amounts toN(rW8,t8), while the second vanishe
because of the definition ofDvW m(t8). The third term in the
Taylor series contains the following sum,
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(
m

xm
a

5x8a

@DvW m~ t8!•nW #2

5
1

2 (
m

xm
a

5x8a

Dvm
2 ~ t8!5

3N~rW8,t8!

2m
kT~rW8,t8!,

~13!

where we have assumed an isotropic distribution of the
locity fluctuations, and we have introduced the definition o
local time-dependent nonrelativistic temperatureT(rW8,t8)
@9#. Keeping the series expansion to second order, the po
tial approximation suitable for particle-in-cell calculations

fe~rW,t !.E 1

urW2rW8u

re~rW8,t8!

12vW ~ t8!•nW /c

3H 11
3kT~rW8,t8!/2mc2

@12vW ~ t8!•nW /c#2 J drW8. ~14!

In principle, this truncated expression is valid only
uDvW (t8)u,uc2v(t8)u. This is ensured for particles faste
than the average by the relativistic dynamic itself. The
locity distribution in the relativistic regime is, howeve
strongly asymmetric and particles with velocities well belo
the mean value may exist. Although these particles do
fulfill the truncation condition, nevertheless their contrib
tion to integral ~14! is not essential, since their velocity
dependent denominator is large.

The expression for the potential vectorAW can be obtained
following the same steps: first, we calculate the total pot
tial as the sum of the single-particle Lie´nard-Wiechert ex-
pressions and, second, we introduce the mean velocity

AW ~rW,t !5E drW8
re~rW8,t8!

curW2rWmu

1

N~rW8,t8!

3 (
m

xm
a

5x8a

vW ~ t8!1DvW m~ t8!

12@vW ~ t8!1DvW m~ t8!#•nW /c
. ~15!

Since ions are supposed to be fixed, the only contributio
the total vector potential comes from the electrons. If
define the current density as

jW~rW,t !5 (
m

xm
a

5x8a

qmvW m~ t8!d~rW2rW8!

5 (
m

xm
a

5x8a

qmd~rW2rW8!@vW ~ t8!1DvW m~ t8!#

5vW ~rW,t !re~rW,t ! ~16!

then the first term in the sum of Eq.~15! leads to a mean
velocity contribution to the vector potential
-
a

n-

-

ot

-

to
e

AW v~rW,t !.E 1

curW2rW8u

jW~rW8,t8!

12vW ~ t8!•nW /c

3H 11
3kT~rW8,t8!/2mc2

@12vW ~ t8!•nW ~ t8!/c#2J drW8. ~17!

The second term of the summatory in Eq.~15! can be evalu-
ated as

(
m

xm
a

5x8a

DvW m~ t8!

12@vW ~ t8!1DvW m~ t8!#•nW /c

. (
mxm

a
5x8a

DvW m~ t8!„DvW m~ t8!•nW …

@12vW ~ t8!•nW /c#2
. ~18!

For an isotropic distribution of the velocity fluctuations, w
might find

AW Dv~rW,t !.E 1

urW2rW8u

re~rW8,t8!nW

@12vW ~ t8!•nW ~ t8!/c#2

3

2

kT~rW8,t8!

mc2 drW8.

~19!

The complete vector potential beingAW (rW,t)5AW v(rW,t)
1AW Dv(rW,t).

Equations~14!, ~17!, and~19! give solutions for the field
potentials in the approximation of a low temperature plasm
Their integration introduces a new complexity in PIC cod
and precludes the direct use of the spatial Fourier transf
or the spatial finite difference methods since now space
time are coupled variables. This affects especially the ca
in which the symmetry of the problem reduces the spa
dimensionality. For instance, we will show in the next se
tion that in the case of 1D problems the potential integr
involve actually two dimensions. However, as will be see
some approximations may be used for certain geometrie
reduce again the dimensionality to one.

III. FORM OF THE POTENTIALS
FOR ONE-DIMENSIONAL CALCULATIONS

Particle-in-cell simulations in one dimension have be
proven to give good insight into a number of the fundame
tal processes involved in the interaction of plasmas w
strong fields. Basically, they integrate the equations in a

FIG. 1. Geometry considered to find the 1D form of the elect
magnetic potentials. The charge and current densities are ass
constant on eachyz plane.
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3980 PRE 58LUIS PLAJA AND ENRIQUE CONEJERO JARQUE
dimensional space, while keeping the three dimensional
ture of the vectors involved, i.e., the electromagnetic fie
and the particles’ velocities. Although the transversal d
namics is neglected, and therefore effects like self-focus
and filamentation are missing, the drastic reduction in co
putation time allows the integration of the equations of m
tion over a space extension of several wavelengths for in
action times of several optical periods, which is extrem
difficult for multidimensional calculations with dense grid
We shall find now the expressions for the retarded elec
magnetic potentials suitable for one-dimensional PIC.

The physical interpretation of a one-dimensional probl
is to consider that all the functions involved have a const
value along the plane perpendicular to the chosen sp
coordinate. One dimensional particles, therefore, corresp
to uniform charged planes in the three dimensional spa
whose electrostatic attraction does not have the Coulom
1/R2 form, but the constant force between the plates o
capacitor@7#. For this to be realistic, one dimensional P
.
a
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-
g
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-

t
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a

codes are restricted to the case of loose focused laser b
with rather uniform cross section.

Assuming a cold plasma, i.e.,T(rW,t)50, the potential of
Eq. ~14! can be expressed in the following form:

fe~x,t !.E dx8E E dy8dz8
1

urW2rW8u

3
re

2~x8,t8!

re~x8,t8!2 jW~x8,t8!•nW /c
, ~20!

where we assume the functions to be constant in theyz
plane, and where we have substituted the mean velo

vW (t8) in terms of the current and charge densities, followi
Eq. ~16!. For convenience, we define the distance to the
servation point asR5urW2rW8u and the cylindrical coordinate
(%,w,x2x8); see Fig. 1. Introducing these definitions in E
~20!, and usingnW 5(rW2rW8)/R, we have
fe~x,t !.E dx8E E %d%dw
re

2~x8,t8!

R Fre~x8,t8!2 j x~x8,t8!
x2x8

Rc
2 j y~x8,t8!

%cosw

Rc
2 j z~x8,t8!

%sinw

Rc G21

. ~21!

Noting thatR5A(x2x8)21%2 and thatR5c(t2t8), thenRdR5%d% if we keepx8 constant and

fe~x,t !.c2E dx8E
2`

t2ux2x8u/c
dt8E

0

2p

dwre
2~x8,t8!H cre~x8,t8!2 j x~x8,t8!

x2x8

c~ t2t8!

2@ j y~x8,t8!cosw1 j z~x8,t8!sinw#A12F x2x8

c~ t2t8!G
2J 21

. ~22!

The integral over the anglew can be easily calculated, giving the final expression for the scalar potential as

fe~x,t !.22pc2E dx8E
2`

t2ux2x8u/c
dt8re

2~x8,t8!H Fcre~x8,t8!2 j x~x8,t8!
x2x8

c~ t2t8!G
2

2@ j y
2~x8,t8!1 j z

2~x8,t8!#F12S x2x8

c~ t2t8! D
2G J 21/2

. ~23!

In a similar way one can obtain the expression for the vector potential as

AW ~x,t !.22pcE dx8E
2`

t2ux2x8u/c
dt8re~x8,t8! jW~x8,t8!H Fcre~x8,t8!2 j x~x8,t8!

x2x8

c~ t2t8!G
2

2@ j y
2~x8,t8!1 j z

2~x8,t8!#F12S x2x8

c~ t2t8! D
2G J 21/2

. ~24!
2D

of
re
nal

han
The general expression for each componentL of the 4-
vector potential is

L~x,t !.E dx8FL~x8,x,t2ux2x8u/c!, ~25!

where FL(x8,x,t2ux2x8u/c) is the time integral of Eqs
~23! and ~24!. It is clear that, despite our one-dimension
 l

approximation, the integration of these potentials has a
complexity, since we have two free variables,x andx8. The
two dimensionality of the problem reflects the anisotropy
the electric field induced by the relativistic velocity. The
are, however, situations that allow for a one dimensio
reduction of Eqs.~23! and ~24!. Consider, for instance, the
case of a thin plasma slab whose width is much smaller t
the focal section of the laser spot. In this situationR@ux
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2x8u for most of the region where the integralFL(x8,x,t
2ux2x8u/c) extends. We can, therefore approximate E
~23! as

fe~x,t !.E dx8FfS x8,t2
ux2x8u

c D
.22pE dx8E

2`

t2ux2x8u/c

3
c2re

2~x8,t8!dt8

$c2re
2~x8,t8!2@ j y

2~x8,t8!1 j z
2~x8,t8!#%1/2

~26!

andAW (x,t) can also be approximated accordingly. Also, f
the case in which the incident electromagnetic wave is aim
perpendicularly to the plasma surface, the electric field w
accelerate the charges mainly in the transversal coordinay
or z). In this case, it is expected thatu j y

2(x8,t8)1 j z
2(x8,t8)u

.u j x
2(x8,t8)u, thus ensuring the correctness of the appro

mation. The integration of the retarded expressions of
~26!, and the correspondent toAW (x,t), can be performed in
one dimension, by discretizing the spatial axis into cells
lengthDx5cDt, and splitting into two contributions on th
left and on the right side ofx @6#.

FIG. 2. Harmonic spectra of the field transmitted by a plas
slab. The plasma density is 1.65 times the critical density. The l
intensity is .431016 W/cm2. ~a! Harmonic spectrum calculate
from a PIC code without the Lie´nard-Wiechert correction,~b! cal-
culated with the LW correction.
.

d
ll
(

i-
q.

f

IV. NUMERICAL RESULTS

We have introduced retardation effects into our 1D P
code with the approximations discussed in the previous s
tion. Our program, therefore, calculates the electromagn
fields by integrating the retarded potentials from the Ma
well equations, taking into account the Lie´nard-Wiechert
~LW! correction in the form of Eq.~26!. On the other hand
the particles’ dynamics, which is governed by the Loren
equation, is also integrated relativistically. Although thr
dimensional velocities are considered, we only take into
count one dimension in space, in the philosophy of the
called 1D3V PIC codes~one dimensional in space and thre
dimensional in velocity! @6,7#.

As discussed above, the 1D approximation describe
plasma slab of infinite extension in the transverse directi
interacting with an electromagnetic wave, also uniform in t
transverse direction. We will consider, therefore, the lon
tudinal axis as the only spatial dimension of our calculatio
The electromagnetic field is assumed to be incident perp
dicularly to the plasma surface, propagating along the spa
dimension considered. In order to preserve consistency w
the approximations discussed in the previous section,
plasma slab must be thin in terms of the laser wavelengthl,
therefore we will consider a target thickness of 0.1l, with
l.0.9 mm ~the laser frequency beingv50.05 a.u.!.

Figure 2 shows the harmonic spectra of the field transm
ted by a plasma slab whose density is 1.65 times the crit
density. The laser intensity is.431016 W/cm2 ~field am-
plitude of 1 a.u.!. The harmonic spectrum calculated from
PIC code without the LW correction for the potentials
shown in Fig. 2~a!, while the spectrum calculated includin

a
er

FIG. 3. The same as Fig. 2, but with the laser intensity increa
to .431018 W/cm2.
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3982 PRE 58LUIS PLAJA AND ENRIQUE CONEJERO JARQUE
LW correction is plotted in Fig. 2~b!. As is apparent, the
relativistic correction is almost insignificant at this laser
tensity. Note that the ratio between the nonrelativistic f
electron quiver velocity to the light speed isa050.14, and
therefore we are in the weak relativistic regime. It is on
worth mentioning a slight increase of the harmonic inten
ties for the LW corrected case~b!. The same slight increas
has been observed in the spectrum of the reflected field,
shown in this paper, when the LW correction is included

The situation changes dramatically when we increase
intensity in two orders of magnitude. Figure 3 shows t
harmonic spectra of the transmitted field for the same par
eters as in Fig. 2, but with the intensity increased

FIG. 4. Reflected field spectra for the cases of Fig. 3.
e

i-

ot

e
e

-

431018 W/cm2. Now the nonrelativistic quiver velocity
would be higher than the light speed, which means that
are in a strongly relativistic regime. The comparison with t
calculation including LW correction@Fig. 3~b!#, and without
it @Fig. 3~a!#, shows a clear increase of the intensity of t
harmonics radiated in the corrected case. The increase s
to be more pronounced for the higher harmonics, which
be orders of magnitude. This high-order harmonic intens
enhancement is also apparent in the reflected field, whic
shown in Fig. 4.

The reason underlying the increase of the high-order h
monic intensities when we include the LW correction may
understood by inspection of Fig. 5. This figure shows a d
sity plot of the longitudinal electric fieldEx as a function of
time ~vertical axis! and along the integration space leng
~horizontal axis!. As previously, Figs. 5~a! and 5~b! are cal-
culated without and including LW, respectively. One c
notice the increase of the longitudinal electric field oscil
tions inside the plasma slab when the LW correction is ta
into account. The electric field oscillations depicted in bo
pictures correspond to the capacitorlike field induced by
surface charge originated by the longitudinal quiver of t
negative charges, as a result of thevW 3BW term in the Lorentz
force. It is the basic mechanism underlying the so-cal
moving mirror models@4,5#.

The increase in the amplitude of the oscillations in t
LW corrected calculation must be, however, attributed to
different mechanism. To analyze it, let us come back to
relativistic field emitted by a charge. The introduction of t
LW velocity dependent denominator breaks the isotropy
the Coulomb potential. If one considers the electric field
sociated with LW potential, it can be split into two contribu
tions @10#, one proportional to the charge’s velocity and t
other to the acceleration. The near field is dominated by
velocity component, which can be written for one particle
terms of itsinstantaneousposition rW8(t) as

EW ~rW,t !5
1

g2@12~v/c!2sin2c#3/2

qnW

urW2rW8u2
, ~27!

where the terms on the right-hand side of the equation sho
FIG. 5. Time evolution of the longitudinal electric field for the case of Fig. 3.~a! shows the result neglecting the Lie´nard-Wiechert
correction, and~b! including it.



d
an
ve
t i
pa
o-
-

e
le
c
n

ot
th
ld

id
is

ld
e

en-
the

d in
iso-
w
in-
to
in-
red

i-

il-

PRE 58 3983INTRODUCTION OF THE LIÉNARD-WIECHERT CORRECTION . . .
be understood to be computed at the present timet, and
wherec5cos21(nW•vW). This field is strongly anisotropic, an
can be understood in terms of a Coulombic field with
anisotropic effective charge. The effective charge obser
in the direction orthogonal to the particle’s displacemen
much larger than the charge at rest. In our calculations,
ticles quiver mostly in the direction parallel to the field p
larization, i.e., they coordinate. As they quiver, their effec
tive charge observed in thex direction fluctuates from the
rest charge to higher values. When the effective charg
greater than the rest charge, the ion background is not ab
compensate the longitudinal field. As a result, plasma os
lations are enhanced and reflected as new high-freque
components of the scattered radiation. It should also be n
from Fig. 4~b! that as the effective charge increases
plasma neutrality is lost, and a residual longitudinal fie
may be detected at some distance of the target. This res
field, however, has ther 22 near field dependence, and it
damped at a short distance from the plasma surface.

V. CONCLUSION

We have analyzed the introduction of the retarded fie
in the particle simulation of plasmas. As we have discuss
las
d
s
r-

is
to

il-
cy
ed
e

ual

s
d,

this implies two different steps. First the use of retarded d
sity functions in the integral of the potentials, and second
introduction of the Lie´nard-Wiechert~LW! correction. We
think that this latter fact has been usually underestimate
the particle calculations of plasmas. As a result of the an
tropic denominator included in the LW correction, we sho
that an enhancement of the longitudinal field oscillations
side the plasma is expected. In turn, this will give rise
plasma charge oscillations that result in a growth in the
tensity of the high-frequency components of the scatte
field.
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