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We discuss the implementation of time retardation in the relativistic simulation of a plasma. We show that
this has to be done at two different levels: first, with the introduction of retarded charge and current densities
in the potential integration and, second, with the implementation of theakieWiechert correction, in the
form of velocity dependent denominators. While the first step is often included in the particle calculation of
plasmas, the second is, generally, neglected. The introduction of tharti&Viechert correction in the phi-
losophy of plasma particle-in-cell codes is, however, nontrivial. In this paper, we propose an extension of these
codes that includes this relativistic correction, and we show explicitly how it can be adapted to one-
dimensional calculations. Finally we present results of the extended code corresponding to a plasma interacting
with a very intense electromagnetic wave. As a consequence of the field anisotropy induced byénd-Lie
Wiechert correction, we find a dramatic enhancement in the high-order frequencies of the electromagnetic field
scattered by the plasma targE$1063-651X%98)09509-9

PACS numbgs): 52.65.Rr, 52.60th, 52.40.Nk

I. INTRODUCTION Il. RELATIVISTIC FIELD CORRECTION
IN THE PARTICLE-IN-CELL CALCULATIONS

In the past two decades we have withessed an extraordi-

nary development in laser techniques, which have lead 10 g-oiion of the Lorentz equation for the particles. Although
rapid growth in the field of nonlinear optics beyond the per-yis is a major correction, it is only partial since the relativ-
turbative regime. Several new aspects have been invesigiic approach should be included also when integrating
gated, both theoretically and experimentdtly. The funda-  pmaxwell equations. In principle, one must expect to find a
mental mechanisms involved in the field harmonic etarded solution for the fields, which can only be obtained
generation and the ionization of single-electron atoms seeBy an integration in the four-dimensional space-time, and not
now understood with the aid of massive computer calculapy an integration in the three-dimensional space. The re-
tions, from which some simple analytical models can be detarged solution for the transverse field has been used previ-
rived. The attention is now focused on more complex sysqyysly[6], but is generally neglected for the longitudinal field.
tems, like many electron atoms, molecules, or clusters, for A" natural way of including retardation is to integrate

Whic;h the exact numeri(_:al integration of the equations ofy\jaxwell equations for the potentials in the Lorentz gauge,
motion becomes a formidable task. Among these complex

The standard PIC codes incorporate relativity in the inte-

systems, solids are being intensively studied at prefsgnt 5

o Cfirat it 194
There are a number of reasons for this interest: first, it is well V2 = b=—4mp 1)
known that the intensity of the scattered radiation is, gener- C” ot

ally, a growing function with the number of scatterers, there-
fore the reflected field from a solid target is orders of mag-
nitude more intense than that of a single atom. Second, solids V2A- 5 —A=——. )
are much easier than gases to handle in the laboratory. The c
experimental convenience is, however, balanced by the com-

plex theoretical treatment of such systems. While the exacthese equations have an integral solution of the fpi6j
integration has been attempted only for very specific cases

[3], approximated models give good insight provided the la- (F" 1) 105t
ser intensity is high enough to ionize the target, and there- 4(r t)= pe_» dr’, A(r,t)== Ja—'gt/dF’.
fore, to create a plasnid,5]. Ir=r'l ], CJ |r—r’|

The numerical integration of a plasma target impinged by ©)

a laser beam can be performed either from the point of view

of the plasma as a charged fluid, or by considering it as a S€here t’
of interacting charged particles. The simplicity of the latter
approach is, probably, one of the reasons why it is so su
cessful among the scientific community. The so-calle
particle-in-cell(PIC) codes discretize the charge density into

an ensemble of quasiparticles with a chosen spatial extension ¢ ) j dr’ > gmdlr —rm(t)]

and the corresponding charge. The particles’ dynamics is m

governed by the Lorentz equation, and the electromagnetic .

field is integrated from the charge and current densities cal- :f dr'>, qmg{ r _Fm(o)_J vpn(7)d7
culated from the particle distributidi®,7]. m 0

=t—|r—r'|/c. From the particle viewpoint, the
charge density associated with an ensemble of charges may
gée written as

)
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where we have replaced the charges’ coordinates by the@ompute the associated fields, they reduce drastically the
time-integral representation. The common approach inime requirements of the code. This is clear by noting that
plasma particle calculations is to compute the charge densitlg. (9) requires a scan over the whole set of particles to

from Eq. (4) discretized in a spatial grid, compute the potential at a single point in the spac®IC
1 calculations, on the other hand, compute the charge and cur-
Fot) = — E 5 rent densities associated with the set of charges, which re-
p(ri =7 U, (5 rent densi | .
V & quires a single scan over the set of particles, and then inte-
Xm=X{" grate Maxwell equations in space, which requires a single

_ ) i scan over the spatial grid. It is, therefore, justified to make
AV being the volume element of the spatial grid, and whergne effort to introduce the relativistic corrections discussed in
i labels the spatial cell in the grid. The summatory of E).  the preceding section into the PIC calculation philosophy.
is restricted to those particles whose positigg(t’) at t’ We will next show how this can be done, provided we intro-
=t—|r—ry(t")|/c is within the cell located at;, i.e., duce some approximations.
x%(t")=x" in 4-vector notation. Firs_t, let us faqtorize the _summation of E®) into a set
In a particle-in-cell codep(r,t') is computed at all pre- of partial summations of particles that share the same volume

vious times using Eq5). Therefore, one might want to cal- €lement at the same timeg (t,)=(r’,t") or xz=x"*in
culate the potentials from the grid version of Eg). How-  4-vector notation. In the following, we will assume the ions
ever, this is not a correct procedure. For instance, for a singlare fixed, which is a reasonable approximation for the short
particle, we would obtain a retarded Coulomb potential forlaser pulses considered in this papémust be pointed out,

the scalar potential, however, that the extension of the following treatment to
include ions or other plasma species is trivigince the
- q ionic potential is constant in time, the only dynamic contri-
¢(ri t)= |F—F—’('[’)| (wrong). (6)  pution comes from the plasma electrons. The charge of the
I

particles being the same, we have

In contrast, the correct formula for the relativistic one-
particle potential is given by the well-knowhiénard-

Wiechertexpression, b0 f d»,Pe(F’:t’) 1 2 1
rt)= r'——s = = =,
-1 q ¢ [r=rm N’ t') 'm 1-v,(t")-nlc
——— ™
[ri—r'(t"] (10)

o/(t)-n
C

#(r, ,t>={1

wheren=[r;—r'(t")]/|r;—r'(t")], the unit vector pointing
to the direction of observation. The reason for the misleading

of Eq. (6) is that we have implicitly taken as unity the spatial WhereN(r’,t") is the.nur’nber of particles sharing the same
integral of the retarded delta functi¢f] volume element at timé’, and the subindex stands for

electrons. To obtain the total potential, the ionic part should
be added. Defining the averaged velocity of the electrons at

I N 1 I
f 5[f'—fm(t')]df'=f»— o(u)du+1. each volume element as
1-(vm-n)lc )
(8)
Therefore, the relativistic corrections in the solution of v(r’,t")= > o) (11

N(r',t")
X

m
’

0t=x

m

Maxwell equations appear at two different levels. First, with
the introduction of retardation, as in E() and, second, in
taking into account the Lieard-Wiechert velocity denomina- . .. R
tors when computing the charge and current densities froe havevn(t")=uv(r',t")+Avy(t’). Substituting in Eq.

an ensemble of particles. A direct way to introduce both(10), the term in the denominator may be expressed as a
levels is to compute the potential associated with everyTaylor series in the velocity fluctuationdy (t")/c,

charge and calculating the total potential as the superposition
of these single-particle potentials,

a

1 1 Avp(t')-nlc
. ————— I1+ i ) -
1-vy(t")-nlc 1—v(t’)-n/c[ 1-wv(t’')-nlc

¢<Et>=§ bim(T 1)
Av(t')-nlc

1 O H T
:2 (9) 1-v(t')-nlc

m 1= 0m(tr) - Am(ta/c [F=To(th)]

2
+] (12

Although, in principle, this is a correct way of calculating Performing the summation of E¢L0), the first term of the

the whole potential, it lacks one of the major advantages of aylor series amounts td(r’,t"), while the second vanishes
the PIC algorithms: By calculating the charge and currenbecause of the definition dfv,(t"). The third term in the
densities associated by a set of charges, and using them Taylor series contains the following sum,
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1 j(r',t)
r—r'| 1—v(t’)-nlc

> [Avg(t)-n)? gv(;,t):f
B cl

4 =x

Xm

ra

. BNt L (17)
% AUzm(t):TkT(f 4,
m=x'

3KkT(r't')y/2me® | .
1 X{ 1+ — - r'.
3 [1-0v(t")-n(t")/c]?

X ‘ The second term of the summatory in E§§5) can be evalu-

(13 ated as

where we have assumed an isotropic distribution of the ve- AJm(t’)
locity fluctuations, and we have introduced the definition of a > = = =
_ o S m  1-[v(t")+Avy(t")]-nlc
local time-dependent nonrelativistic temperaturér’,t’) X% =x' @
[9]. Keeping the series expansion to second order, the poten-
tial approximation suitable for particle-in-cell calculations is 5 Av (1) (Avp(t')-n) 19
= = = 1
Crogr mx&=x'® [1_U(tl)'n/C]2
¢ (-’t) f 1 pe(r vt ) ‘m
rt)y=| ——= = =
) [r=r'[ 1=ov(t")-n/c For an isotropic distribution of the velocity fluctuations, we
- might find
3kT(r't")/2me| .
X1 1+ = = dr’. (14 N >
[1-v(t")-n/c]? . 1 pe(r’,t")n 3KT(r',t") .
Ay ()= | —= = = 55 p dr’.
. . o . . Ir=r'| [1—v(t")-n(t")/c]?2 m
In principle, this truncated expression is valid only if (19)

|Av(t")|<|c—uv(t")]. This is ensured for particles faster
than the average by the relativistic dynamic itself. The ve-The complete vector potential beind\(r,t)=A,(r,t)
locity distribution in the relativistic regime is, however, +'&A (F ).
strongly asymmetric and particles with velocities well below Ec;ua’tions(14), (17), and(19) give solutions for the field
the mean value may exist. Although these particles do nofentials in the approximation of a low temperature plasma.
fulfill the truncation condition, nevertheless their contribu- e jntegration introduces a new complexity in PIC codes
tion to integral (14) is not essential, since their velocity- 4nq precludes the direct use of the spatial Fourier transform
dependent denominator is large. . or the spatial finite difference methods since now space and
The expression for the potential vectdrcan be obtained  time are coupled variables. This affects especially the cases
following the same steps: first, we ca[culate the total potenin which the symmetry of the problem reduces the spatial
tial as the sum of the single-particle biard-Wiechert ex-  dimensionality. For instance, we will show in the next sec-
pressions and, second, we introduce the mean velocity  tjon that in the case of 1D problems the potential integrals
involve actually two dimensions. However, as will be seen,
pe(F’,t’) 1 some approximations may be used for certain geometries to
reduce again the dimensionality to one.

A(F.t)= J dr

c|r—ry N(r’.t")

l;(t/)-i-Al;m(t') Ill. FORM OF THE POTENTIALS
X % (19 FOR ONE-DIMENSIONAL CALCULATIONS
xp=x'

1-[o(t)+Av(t")]-nlc’
“ Particle-in-cell simulations in one dimension have been
proven to give good insight into a number of the fundamen-
Since ions are supposed to be fixed, the only contribution ta| processes involved in the interaction of plasmas with
the total vector potential comes from the electrons. If westrong fields. Basically, they integrate the equations in a one
define the current density as

jro= 2 gumt)Hér-r")

a_ra
me

X

\

= D qua(r—r)[o(t")+Avy(t")] 1
=0(r,1)pe(r,t) (16)

. _ FIG. 1. Geometry considered to find the 1D form of the electro-
then the first term in the sum of E@L5) leads to a mean- magnetic potentials. The charge and current densities are assumed
velocity contribution to the vector potential constant on eaciz plane.
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dimensional space, while keeping the three dimensional nazodes are restricted to the case of loose focused laser beams
ture of the vectors involved, i.e., the electromagnetic fieldswith rather uniform cross section.

and the particles’ velocities. Although the transversal dy- Assuming a cold plasma, i.€T(r,t)=0, the potential of
namics is neglected, and therefore effects like self- focusngq (14) can be expressed in the following form:

and filamentation are missing, the drastic reduction in com-

putation time allows the integration of the equations of mo- ,
tion over a space extension of several wavelengths for inter- Pe(X t)—j dx f f dy'dz

action times of several optical periods, which is extremely Ir=r'|

difficult for multidimensional calculations with dense grids. p2(x' 1)

We shall find now the expressions for the retarded electro- XK ———, (20)
magnetic potentials suitable for one-dimensional PIC. pe(X' 1) =j(x",t")-nlc

. The physical interpretation c_;f a qne-dimensional problequhere we assume the functions to be constant inythe
is to consider that all the functions involved have a constan lane, and where we have substituted the mean velocity

value along the plane perpendicular to the chosen spati . - .
g D berp P t’) in terms of the current and charge densities, following

coordinate. One dimensional particles, therefore, correspo 16, F . define the di he ob
to uniform charged planes in the three dimensional space; g.(16). For convenience, we define the distance to the ob-

whose electrostatic attraction does not have the CoulombléerVat'On point aR=|r —r’| and the cylindrical coordinates
1/R? form, but the constant force between the plates of 4@, X—x'); see Fig. 1. Introducing these definitions in Eq.
capacitor[7]. For this to be realistic, one dimensional PIC (20), and usingn=(r—r’)/R, we have

’ -1

X—X ecosp . posing

pe(X' 1) = j (X' t)R—_Jy( x' /)—C_JZ(X ) =Re (21)

s [ o | [ aseast )

Noting thatR= \/(x—x')?+ ¢? and thatR=c(t—t’), thenRdR=pdg if we keepx’ constant and

!

2 ’ t=x=x'|/c ' 2m 2,1 471 Y ; rogr
¢e(X,t)2C dX dt dQDpe(X ,t ) Cpe(x !t )_JX(X vt ) 4!
o 0 C(t t )

/ x—x' 1271
—[jy(x',t")cosp+j,(x',t")sing] 1—m ] . (22

The integral over the angle can be easily calculated, giving the final expression for the scalar potential as

x—x'" 1?
Cpe(X t)_Jx(X ) )}

c(t—t’
X—X' 271) —1/2
c(t—t’ )) } ) (23

In a similar way one can obtain the expression for the vector potential as

de(X,t)=—2mC de Jt hxlie g p2(x’ t)[

—[ji(x',twﬂ%(x',t')][l

2

—Ix=x'|/c X=X’
A(x t)~—2wcj dxf dt’ po(x’ t)](X t)[ Cpe(X',t") —]x(X', t)c(t 0
X—X' 271) —1/2
—[j§(x’,t’)+j§(x',t')][1 (C(t )> ” . (24)

The general expression for each compong&ntf the 4-  approximation, the integration of these potentials has a 2D
vector potential is complexity, since we have two free variablesandx’. The
two dimensionality of the problem reflects the anisotropy of
the electric field induced by the relativistic velocity. There
are, however, situations that allow for a one dimensional
reduction of Egs(23) and (24). Consider, for instance, the
where F, (x’,x,t—|x—x’|/c) is the time integral of Egs. case of a thin plasma slab whose width is much smaller than
(23) and (24). It is clear that, despite our one-dimensionalthe focal section of the laser spot. In this situati®® |x

A(x,t)zj dx' Fp(x',x,t—|x—x"|/c), (25
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FIG. 3. The same as Fig. 2, but with the laser intensity increased

FIG. 2. Harmonic spectra of the field transmitted by a plasma
P yap dp = =4x10%® Wicn?.

slab. The plasma density is 1.65 times the critical density. The las
intensity is =4x 10" W/cn?. (a) Harmonic spectrum calculated
from a PIC code without the Lieard-Wiechert correctior(p) cal-
culated with the LW correction. We have introduced retardation effects into our 1D PIC
code with the approximations discussed in the previous sec-
—x'| for most of the region where the integrdi, (x’,x,t t@on. Our program, therefore, calculates jthe electromagnetic
—|x—x'|/c) extends. We can, therefore approximate Eq.flelds by integrating the_ retarded potentlgls_ from_the Max-
(23) as well equations, _taklng into account the hird-Wiechert
(LW) correction in the form of Eq(26). On the other hand,
the particles’ dynamics, which is governed by the Lorentz
[x—x"| equation, is also integrated relativistically. Although three
¢e(X,t)2f dx’}j,,(x’,t— c ) dimensional velocities are considered, we only take into ac-
count one dimension in space, in the philosophy of the so-
, [t=1x=x"lIc called 1D3V PIC codegone dimensional in space and three
2_27Tf dx j dimensional in velocity[6,7].
As discussed above, the 1D approximation describes a
Cng(x’,t’)dt' plasma slab of infinite extension in the transverse direction,
X{Czpz(x’ ) —[2X ) +] 20X )2 interacting with an electromagnetic wave, also uniform in the
e i 2 transverse direction. We will consider, therefore, the longi-
(26) tudinal axis as the only spatial dimension of our calculation.
The electromagnetic field is assumed to be incident perpen-
dicularly to the plasma surface, propagating along the spatial
imension considered. In order to preserve consistency with
e approximations discussed in the previous section, our
lasma slab must be thin in terms of the laser waveleRgth

IV. NUMERICAL RESULTS

and,&(x,t) can also be approximated accordingly. Also, for
the case in which the incident electromagnetic wave is aime
perpendicularly to the plasma surface, the electric field will
accelerate the charges mainly in the transversal coordiyate herefore we will consider a target thickness of)J. With

or z). In this case, it is expected thb,ﬁ(x t')+j2(x )] A=0.9 um (the laser frequency being=0.05 a.u.
>[jx(x",t")|, thus ensuring the correctness of the approxi- Figure 2 shows the harmonic spectra of the field transmit-
mation. The integration of the retarded expressions of Eced by a plasma slab whose density is 1.65 times the critical
(26), and the correspondent m(x t), can be performed in density. The laser intensity is4x 10'® W/cn? (field am-
one dimension, by discretizing the spatial axis into cells ofplitude of 1 a.u. The harmonic spectrum calculated from a
length Ax=cAt, and splitting into two contributions on the PIC code without the LW correction for the potentials is
left and on the right side of [6]. shown in Fig. 2a), while the spectrum calculated including
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4x10'® W/cnm?. Now the nonrelativistic quiver velocity
10! g would be higher than the light speed, which means that we
E are in a strongly relativistic regime. The comparison with the

=

:

A :

Ta’ 10 3 calculation including LW correctiofFig. 3(b)], and without

e 10° 1 it [Fig. 3@], shows a clear increase of the intensity of the

Q E = . . . .

g : 1 harmonics radiated in the corrected case. The increase seems

o 10° [ E to be more pronounced for the higher harmonics, which can

2 3 be orders of magnitude. This high-order harmonic intensity

2 10" E enhancement is also apparent in the reflected field, which is

fé ; shown in Fig. 4.

£ 10 Bl o The reason underlying the increase of the high-order har-

& 1 9 17 25 3 monic intensities when we include the LW correction may be
Harmonic order understood by inspection of Fig. 5. This figure shows a den-

- sity plot of the longitudinal electric fiel&, as a function of

*§ . time (vertical axi3 and along the integration space length

s 10 3 (horizontal axi$. As previously, Figs. & and 5b) are cal-

§ 10 : culated without and including LW, respectively. One can

£ E notice the increase of the longitudinal electric field oscilla-

g 105 E tions inside the plasma slab when the LW correction is taken

g . into account. The electric field oscillations depicted in both

§ 108 i pictures correspond to the capacitorlike field induced by the

& : 3 surface charge originated by the longitudinal quiver of the

3 w0 negative charges, as a result of the B term in the Lorentz

i er T T force. It is the basic mechanism underlying the so-called

E 1 9 17 25 33 moving mirror modelg§4,5].

The increase in the amplitude of the oscillations in the
LW corrected calculation must be, however, attributed to a
different mechanism. To analyze it, let us come back to the
L - . relativistic field emitted by a charge. The introduction of the
LW _C(_)rrgctlon IS _plotfted in F'g.' ‘1})- .AS IS appa'rent, th? LW velocity dependent denominator breaks the isotropy of
relat_lwstlc correction is al_most insignificant at th|s_ I_as_er N”the Coulomb potential. If one considers the electric field as-
tensity. Not_e that the_ ratio betvyeen the nanelat|V|st|c free'sociated with LW potential, it can be split into two contribu-
electron quiver velocity to the light speedag=0.14, and jons110], one proportional to the charge’s velocity and the
therefore we are in the weak relativistic regime. It is only yier 1 the acceleration. The near field is dominated by the

worth mentioning a slight increase of the harmonic intensiy g4ty component, which can be written for one particle in
ties for the LW corrected cagb). The same slight increase . =,
derms of itsinstantaneougpositionr’(t) as

has been observed in the spectrum of the reflected field, n

shown in this paper, when the LW correction is included. -
The situation changes dramatically when we increase the E(r t)= 1 an 27)

intensity in two orders of magnitude. Figure 3 shows the Y1 (vlc)%sity]¥? [r—r"|2’

harmonic spectra of the transmitted field for the same param-

eters as in Fig. 2, but with the intensity increased towhere the terms on the right-hand side of the equation should

Harmonic order
FIG. 4. Reflected field spectra for the cases of Fig. 3.

(@) Longitudinal field ®)
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3 2.0 3
S S
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= =
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01 0 01 02 03 2 01 0 01 02 03
Plasma depth (wavelength units) Plasma depth (wavelength units)

FIG. 5. Time evolution of the longitudinal electric field for the case of Fig(e3.shows the result neglecting the hard-Wiechert
correction, andb) including it.
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be understood to be computed at the present imand this implies two different steps. First the use of retarded den-
where = cosfl(ﬁ-z;). This field is strongly anisotropic, and Sity functions in the integral of the potentials, and second the
can be understood in terms of a Coulombic field with anintroduction of the Lieard-Wiechert(LW) correction. We
anisotropic effective charge. The effective charge observethink that this latter fact has been usually underestimated in
in the direction orthogonal to the particle’s displacement isthe particle calculations of plasmas. As a result of the aniso-
much larger than the charge at rest. In our calculations, patropic denominator included in the LW correction, we show
ticles quiver mostly in the direction parallel to the field po- that an enhancement of the longitudinal field oscillations in-
larization, i.e., they coordinate. As they quiver, their effec- side the plasma is expected. In turn, this will give rise to
tive charge observed in the direction fluctuates from the plasma charge oscillations that result in a growth in the in-

rest charge to higher values. When the effective charge iensity of the high-frequency components of the scattered
greater than the rest charge, the ion background is not able #g|d.

compensate the longitudinal field. As a result, plasma oscil-

lations are enhanced and reflected as new high-frequency

components of the scattered radiation. It should also be noted

from Fig. 4b) that as the effective charge increases the ACKNOWLEDGMENTS
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